## Development of a New Thermo-chemical and Electrolytic Hybrid Hydrogen Production Process for Sodium Cooled FBR Status and Future Plan

### IAEA International Conference on Non-Electric Applications of Nuclear Power, April 2007 O-Arai, Japan

Toshio NAKAGIRI, Toshihide TAKAI, Tai ASAYAMA, and Yoshiyuki INAGAKI

Japan Atomic Energy Agency





## Background

- Principle of the new hybrid hydrogen production process
- Current status of R&D
- Future plan



## Background

- In "Feasibility study on Commercialized Fast Breeder Reactor (FBR) Cycle Systems" of JAEA, a concept of a multi-purpose (Electricity supply, Hydrogen Production, etc.) small sized reactor has been studied.
- Requirements for hydrogen production system of FBR
   Maximum temperature : 500-550 deg-C
  - Thermal efficiency : higher than water electrolysis
  - Hydrogen production from water : No use of fossil fuel, no CO<sub>2</sub> emission.





## Applicability of Hydrogen Production Technologies for FBR Plant

| Resource        | Method                       | Proposed Tech.                                                                                                     | Present Status                           | Features & Issues                                                                                                                                     |
|-----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water           | Electrolysis                 | <ul> <li>Alkaline Water</li> <li>Electrolysis</li> <li>SPEWE*</li> <li>HTE*</li> </ul>                             | Commercialized<br>R&D Stage              | <ul> <li>Mature Tech.</li> <li>Low thermal efficiency<br/>(~36% for FBR)</li> </ul>                                                                   |
|                 | Thermo-<br>chemical<br>Cycle | <ul> <li>I-S method</li> <li>∙UT-3 method</li> <li>∙W.H. method、etc</li> </ul>                                     | R&D Stage                                | <ul> <li>Higher thermal<br/>efficiency (~50%)</li> <li>High temperature heat<br/>source</li> <li>Material corrosion</li> </ul>                        |
| Fossil<br>Fuels | Steam<br>Reforming           | <ul> <li>Steam Reforming of<br/>Natural Gas</li> <li>SER<sup>*</sup> Process</li> <li>Membrane Reformer</li> </ul> | Commercialized<br>Demonstration<br>Stage | <ul> <li>Excellent thermal<br/>efficiency (70%~)</li> <li>High plant construction<br/>const; SER &amp; MR</li> <li>CO<sub>2</sub> emission</li> </ul> |

SPEWE: Solid Polymer Electrolyte Water Electrolysis, HTE: High Temperature Electrolysis, SER: Sorption Enhanced Reaction

**Development of a Lower Temperature Thermochemical Cycle** 



### **Principle of HHLT**

**HHLT** (thermo-chemical and electrolytic <u>Hybrid Hydrogen process in Lower</u> <u>Temperature range</u>)

| $2H_2O + SO_2$        | -> | $H_2SO_4 + H_2$                     |
|-----------------------|----|-------------------------------------|
| $H_2 \overline{SO}_4$ | -> | $H_2O + SO_3$                       |
| SO <sub>3</sub>       | -> | SO <sub>2</sub> + 1/2O <sub>2</sub> |

<100 deg-C (electrolysis:0.17v) [1] 400 deg-C (thermal decomposition) [2]

500-550 deg-C (electrolysis:0.13v) [3]

#### Westinghouse process

 $SO_3$  ->  $SO_2 + 1/2O_2$  >800 deg-C (thermal decomposition) [3]'

- The hybrid process consists of H<sub>2</sub>SO<sub>4</sub> synthesis and decomposition reactions. (Based on "Westinghouse process")
- -Maximum operation temperature is about 500-550 deg-C.
- Hydrogen and oxygen are produced from water.



## Electrolytic SO<sub>3</sub> splitting with oxygen conductive solid electrolyte

### • Splitting voltage of $SO_3$ is 0.13V at 500°C.



# Steps of H<sub>2</sub> Energy Introduction & of Hybrid Tech. Development



## **Conceptual FBR-Hydrogen Plant Design**





## Current status of R&D

- The experimental apparatus for 1NL/h hydrogen production has been developed and an experiment was performed.
  - To evaluate hydrogen production efficiency
  - To extract technical problems to develop  $100NL/h-h_2$  production apparatus.
- Development of higher performance electrolysis cells and structural materials for H<sub>2</sub>SO<sub>4</sub> corrosion have been performed.



# Development of the experimental apparatus for 1NL/h hydrogen production



Photo of the experimental apparatus

Experimental apparatus for 1NL/h H<sub>2</sub> production



# Experimental conditions of the hydrogen production experiment

#### **Experimental conditions**

Target value

| ltem                                                                                                                                             | Condition                                              | item                                                       | condition                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|
| H₂SO₄ vaporizer<br>Temperature                                                                                                                   | <b>600-700</b> deg-C                                   | H <sub>2</sub> production rate                             | 0.5NL/h<br>(current value:1.2A)                     |
| SO <sub>3</sub> electrolysis cell<br>Temperature<br>cell voltage<br>SO <sub>2</sub> solution<br>electrolysis cell<br>Temperature<br>Cell voltage | 600 deg-C ->550 deg-C<br>0.85V<br>8 deg-C<br>1.2V-1.1V | O <sub>2</sub> production rate<br>Experimental<br>duration | 0.25NL/h<br>(current value:1.2A)<br>1-several hours |
| H₂SO₄ concentration<br>H₂SO₄ flow rate                                                                                                           | 50wt%<br>2ml/min                                       |                                                            |                                                     |

### **Experimental result**



-H<sub>2</sub> production rate: 0.42NL/h, O<sub>2</sub> production rate: 0.21NL/h

#### JAEA

### **Evaluated efficiency**

$$\eta = \frac{H_{HHV} * Mx}{P + Q} \qquad (1)$$

- Mx : amount of generated X gas (mol, X=hydrogen, oxygen)
  - $=\frac{\Sigma Ix^*f}{96485^*ex}$

  - Ix : cell current of X gas (A)
  - f : data sampling period (20sec)
  - ex : number of electron (2 for hydrogen molecule, 4 for oxygen molecule)

*H<sub>HHV</sub>: higher heat value of hydrogen (285.8kJ/mol)* 

- : electricity supplied to both electrolysis cell (kJ) -measured by potentiostats (SO<sub>3</sub> electrolysis & SO<sub>2</sub> solution electrolysis)
- *Q* : heat from heat source (kJ)
  - -No heat loss was considered
  - -equilibrium composition of gas phase was calculated by MALT-II & GEM

### **Evaluated thermal efficiency was 2.1%.**

## Influence of efficiency of SO<sub>3</sub> electrolysis



### Relationship between H<sub>2</sub> production efficiency and SO<sub>3</sub> electrolysis efficiency

## Summary of the hydrogen production experiment

- A hydrogen production experiment was performed using the 1NL/h-h<sub>2</sub> level apparatus.
  - hydrogen production efficiency will be evaluated as about 2%. Efficiency of the electrolysis cells must be increased to obtain higher hydrogen production efficiency.
  - durability of the apparatus must be improved.

## **Development of SO<sub>3</sub> electrolysis cell**

 SO<sub>3</sub> electrolysis cell using small YSZ tube (6mm in diameter, 100mm in length and 0.5mm in thickness) was manufactured.



SO<sub>3</sub> electrolysis cell using small YSZ tube

## Development of Hydrogen production cell (SO<sub>2</sub> electrolysis)

- PEFC (Polymer Electrolyte Fuel Cell) was modified for hydrogen production supplying SO<sub>2</sub> gas and H<sub>2</sub>O.
- Investigation on SO<sub>2</sub> cross-over behavior through some cation exchange membranes has been performed.



Liquid-gas separator

Hydrogen production cell (PEFC base: Electrode area 25cm<sup>2</sup>)



cation membranes





## Conclusion

- The experimental apparatus for 1NL/h-h<sub>2</sub> production by the hybrid sulfur process was developed and technical problems were extracted from the hydrogen production experiment performed in 2006.
- Development of electrolysis cells will be continued for a few years, then development of 100NL/h-h<sub>2</sub> apparatus will be started.

